Prophylaxis for Cytomegalovirus infection in patients following renal transplantation

GUIDELINES

a. Prophylactic treatment for Cytomegalovirus (CMV) is recommended in solid organ transplantation as it is associated with a significant decrease in CMV disease and infection compared with placebo or no treatment (approximately a 50% and 40% decrease in relative risk, respectively) (Level I evidence).

b. The use of the antiviral agents oral valganciclovir, oral valaciclovir, and intravenous ganciclovir, is recommended (Level II evidence). The addition of anti-CMV immunoglobulin to these agents is not recommended as there is no additional benefit (Level I evidence).

c. On the pre-transplant CMV antibody assay, prophylaxis for CMV disease is indicated for the following donor/recipient subgroups:
 - D+ and R+
 - D+ and R-
 - D-/R+
 - but not when Donor and Recipient are both negative.

d. In high risk, D+/R- recipients, it is recommended that the duration of prophylaxis be extended from 3 to 6 months as it significantly reduces CMV disease and viraemia.

SUGGESTIONS FOR CLINICAL CARE

(Suggestions are based on Level III and IV evidence)

- Cost-effectiveness: In D+/R- recipients, 6-month compared with 3-month prophylaxis was cost-effective in reducing CMV infection and disease.
- There is no indication for the use of Immunoglobulin in prophylaxis of CMV disease in solid organ transplant recipients.
- Dosing: In the reported studies, total daily doses of antiviral agents used were as follows and were reduced for impaired renal function:
 - oral valaciclovir 3200 mg
 - oral valganciclovir 900 mg, and
 - intravenous ganciclovir 5-10 mg/kg for an average of 14 days.

 Note: Oral ganciclovir is no longer available in Australia.

- Prophylaxis is also indicated when using T cell-depleting antibody separate to routine prophylaxis as described above.

IMPLEMENTATION AND AUDIT

No recommendation.
BACKGROUND

Cytomegalovirus is the most frequent viral infection following renal transplantation with evidence of infection found in at least two-thirds of patients.

Cytomegalovirus belongs to the group of herpesviruses and is a common infection in the community, with about 80% of adults showing seropositivity to the virus. [1] The major determinants of infection are evidence of virus in the donor, the presence of latency (seropositivity) in the recipient, and the type of immunosuppressive regimen administered. It is usual to make a distinction between infection and disease where disease is characterised by evidence of organ damage and infection is by detection of virus, with or without disease.

Cytomegalovirus disease is associated with increased morbidity and mortality, whereas infection alone may be associated with an increased risk of transplant rejection and bacterial and fungal infection. [2-4] These consequences have led to interventions for prophylaxis, early diagnosis and treatment.

The objectives of this guideline are to provide evidence to support:
- the use of CMV prophylaxis in preventing primary infection or re-activation of latent infection
- the best agents to reduce infection and disease
- the duration of therapy
- the cost-effectiveness of therapy, and
- the effect of prophylaxis on acute rejection.

SEARCH STRATEGY

Databases searched: MeSH terms and text words for cytomegalovirus were combined with MeSH terms and text words for organ transplantation and combined with MeSH terms and text words for antiviral agents and prophylaxis. The search was carried out in Medline (1966 – January Week 1, 2009). The Cochrane Renal Group Trials Register was also searched for trials not indexed in Medline.

Date of search: 7 January 2009.

WHAT IS THE EVIDENCE?

Antiviral agents: Meta-analyses

A Cochrane review of CMV prophylaxis with antiviral agents for solid organ transplantation was reported by Couchoud [5] and updated by Hodson et al in 2008. [6] The latter meta-analysis included 34 studies with 3850 patients and looked at prophylaxis using acyclovir, ganciclovir and valganciclovir compared with placebo or no treatment. These trials consisted of all solid organ transplants and were limited to antiviral medications. They excluded trials using other interventions such as immunoglobulins, interferons and vaccination. The Cochrane review searched the usual databases up to February 2007.

Prophylaxis significantly reduced CMV disease, CMV infection, all-cause mortality, and other infections such as those caused by HSV, bacteria and protozoa. There was no reduction in acute rejection or graft loss. Seven studies looked at direct comparison of antiviral agents. Ganciclovir was more effective than acyclovir and there were no differences between IV ganciclovir and oral valganciclovir.

Subgroup analysis of pre-transplant antibody status (donor: D + or – and recipient: R + or –) in the
first Cochrane review showed significant reduction in disease in D + and R + or – groups. [5] In D – R + groups, a reduction in disease was observed but this did not reach statistical significance. There was no significant reduction in infection in any subgroup. However, numbers were small, with less than 100 in each group. Although subgroup analysis between ganciclovir and acyclovir did not show any difference in disease, there was a significant difference in infection with ganciclovir (RR 0.52; CI: 0.42-0.64 for ganciclovir and RR 0.80; CI: 0.60-1.05 for acyclovir).

A smaller meta-analysis conducted by Kalil et al, found 17 trials with 1980 recipients of solid organ transplants. [7] Compared with placebo or no therapy, acyclovir and ganciclovir prophylaxis reduced CMV disease (OR 0.20; CI: 0.13-0.31). This study also found that both prophylactic and pre-emptive strategies significantly reduced allograft rejection.

Antiviral agents: Other randomised controlled trials

Oral acyclovir versus oral ganciclovir trials [8,9] show ganciclovir to be a superior agent for the prevention of disease. Valaciclovir versus placebo [10, 11] shows similar results to the Cochrane review. Another randomised controlled trial (RCT) comparing oral ganciclovir and valaciclovir with controls or no therapy showed no significant differences, with both treatment arms being superior to controls for CMV disease, infection and treatment failure (death, graft loss, disease or withdrawal). [12]

In 2004, Paya et al reported a double-blind, double-dummy, clinical study comparing oral ganciclovir and oral valganciclovir in 301 high-risk (D+/R-) recipients of solid organ transplants. [13] The results showed that the agents were equivalent in terms of CMV disease, viraemia, acute rejection, graft loss and acute rejection after CMV disease. Those treated with valganciclovir had a slight increase in neutropaenia (8.2% vs. 3.2%). The time to onset of CMV disease was delayed in the valganciclovir group at 6 months but they were equal at 12 months. The pharmacokinetic study showed that valganciclovir patients achieved a higher area under the curve (AUC) by 1.7%.

Antiviral agents: Other studies

A retrospective study in a single centre by Akalin et al (2003) of 129 kidney and kidney/pancreas recipients also showed equivalence between oral valganciclovir and ganciclovir. [14] An RCT with ganciclovir vs. placebo showed reduction in CMV during T cell depleting therapy following transplantation. [15]

Immunoglobulin therapy

The Cochrane Review of immunoglobulin, vaccines or interferon for preventing CMV disease in solid organ transplant recipients first published in 2007 by Hodson et al, included 37 studies with 2185 recipients. [16] There was no significant difference in CMV disease, CMV infection or all-cause mortality with immunoglobulin (Ig), vaccine or interferon compared with placebo/no therapy, although Ig significantly reduced death from CMV disease. Likewise, there were no differences between Ig combined with antivirals compared with antivirals alone.

Another smaller meta-analysis of solid organ transplant recipients by Bonaros et al [17] included 11 trials with 698 recipients in which Ig was used in one arm and in three was used with acyclovir. They showed improved total survival (RR 0.67; CI: 0.47-0.95), reduced CMV disease (RR 0.70; CI: 0.57-0.85) and reduced CMV-associated deaths (RR 0.45; CI: 0.24-0.84) but in the renal transplant subgroup there was no survival benefit (RR 0.35; CI: 0.12-1.04). However, an RCT of immune globulin versus no treatment reported by Snydman et al in D +/R – renal transplant recipients shows reduction in CMV disease from 60% to 21% (P < 0.01) but there was no reduction in CMV infection as measured by virus isolation or seroconversion. [18]
Organ rejection

The meta-analysis by Kalil et al, showed that use of the antiviral agents acyclovir or ganciclovir, as prophylaxis or pre-emptive therapy, reduced acute rejection compared with placebo or no treatment (OR 0.74; CI: 0.59-0.94 for prophylaxis and OR 0.47; CI: 0.24-0.91 for pre-emptive treatment). [7]

A prospective, randomised trial of 3-month therapy with oral ganciclovir, valganciclovir or deferred therapy in 83 subjects, showed a reduction in acute rejection in both antiviral groups compared with the deferred group (incidence rates of 6%, 3% and 67%, respectively; P < 0.001). There was no difference between the antiviral therapy groups. [19]

The Cochrane meta-analysis found no difference in rejection rates. [5,6]

Duration of therapy

There are no RCTs that compare duration of therapy in all recipients. One RCT comparing acyclovir and ganciclovir in liver transplant recipients, with 3 months prophylaxis, shows that protection against CMV disease lasts up to 1 year [20]. These authors mention that their regimen was not associated with ganciclovir resistance.

A retrospective study of a consecutive cohort of 3 months’ and 6 months’ prophylaxis in 222 seronegative recipients of seropositive kidney and/or pancreas transplant patients (who were followed up for 12 months following cessation of therapy) showed a significant reduction of CMV disease in the 6-month group (HR 0.35; CI: 0.17-0.72). [21]

A new study, the IMPACT Study, [22] reported that in high risk D+/R- recipients randomised to 3 or 6 months’ valganciclovir prophylaxis, there was significantly less disease and viraemia with 6 months compared with 3 months of therapy. This trial has been criticised [23] for its design and analysis, with those authors concluding that it does not have the strength of evidence to change practice.

Cost-effectiveness

Luan et al also looked at the cost-effectiveness of prophylaxis versus pre-emptive therapy. In D+/R- recipients, 6-months’ compared with 3-months’ prophylaxis was cost-effective in reducing CMV infection and disease. [24]

Cytomegalovirus drug resistance

In a separate report of the study by Paya et al [12], Boivin et al [25] prospectively screened for ganciclovir resistance by UL97 and UL54 gene sequencing on CMV DNA positive sera (these sequences would detect most reported resistance mutations). Cytomegalovirus resistance did not emerge with valganciclovir and of 3 patients in the ganciclovir group with gene sequence positivity, there were no clinical consequences and all three cleared the virus.

SUMMARY OF THE EVIDENCE

Please refer to the enclosed evidence tables.
WHAT DO THE OTHER GUIDELINES SAY?

Kidney Disease Outcomes Quality Initiative: [26] December 2009 (13.2.1). CMV prophylaxis: We recommend that Kidney Transplant Recipients (except when donor and recipient both have negative CMV serologies) receive chemoprophylaxis for CMV infection with oral ganciclovir or valganciclovir for at least 3 months after transplantation (level 1B) and for 6 weeks after treatment with a T-cell-depleting antibody (level 1C). The use of valacyclovir and acyclovir should be restricted to situations where ganciclovir/valganciclovir cannot be used.

British Renal Association: No recommendation.

British Transplant Society: [27] March 2011. For renal transplant recipients, the recommended management strategy is one of:
- Oral valganciclovir for at least 100 days (1 A), or
- Oral valganciclovir for 200 days (2 B),
- Oral valaciclovir for 90 days (2 A),
- Intravenous ganciclovir for 28 days (2 A),
- Serial measurements of viral load and treatment with oral valganciclovir or intravenous ganciclovir when levels predictive of disease are reached (2 A).

No prophylaxis against primary infection is recommended for D+/R+ unless anti-T cell therapy is used.

Canadian Society of Nephrology: No recommendation.

Canadian Society of Transplantation: [28] November 2004. Universal prophylaxis. One of the following:
- Oral ganciclovir (3g/day) [A1]
- Valganciclovir (900mg/day) [A1]
- IV ganciclovir (5mg/kg/day)
- Oral valacyclovir (8g/day) is an alternative.

European Best Practice Guidelines: December 2000. CMV prophylaxis is recommended for the seronegative recipients of a seropositive donor kidney and for seropositive recipients receiving antibody treatment as induction or therapy for acute rejection. Prophylaxis must be selected from the following five validated modalities:
- Weekly intravenous infusions of hyperimmune globulins for 6 weeks (at high dose) or for 16 weeks (at low dose).
- Oral acyclovir for 12 weeks at a daily dose of 3200 mg adjusted for renal function.
- Oral valaciclovir for 90 days at a daily dose of 8000 mg adjusted for renal function.
- Ganciclovir administered intravenously for at least 14 days at a dose of 10 mg/kg/day adjusted for renal function.
- Oral ganciclovir for 2-12 weeks at a daily dose of 3000 mg adjusted for renal function. [29]

American Society of Transplantation (incorporating KDIGO Guidelines for the Care of Kidney Transplant Recipients): Update published December 2009. Am J Transplant 2009; Vol 9, Supplement 3. CMV Prophylaxis – Recommend chemoprophylaxis with oral ganciclovir, valganciclovir, or valacyclovir for at least 3 months after transplantation (Level 1 evidence). Except prophylaxis is generally not needed when donor and recipient both have negative serology, provided CMV negative blood or leukocyte-depleted blood products are used.[30, 31]
SUGGESTIONS FOR FUTURE RESEARCH

1. Conduct studies to determine the optimal duration of therapy of antiviral agents.
2. Conduct studies to determine the optimum dose of antiviral medications.
3. Conduct a trial of delayed versus immediate use of prophylaxis to induce CMV specific immunity.

CONFLICT OF INTEREST

Bruce Pussell has a Level II d conflict of interest according to the conflict of interest statement set down by KHA-CARI.
REFERENCES

APPENDICES

Table 1. Characteristics of randomised controlled trials

<table>
<thead>
<tr>
<th>Study ID (author, year)</th>
<th>N</th>
<th>Study Design</th>
<th>Setting</th>
<th>Participants</th>
<th>Intervention (experimental group)</th>
<th>Intervention (control group)</th>
<th>Follow up (months)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flechner et al 1998</td>
<td>101</td>
<td>Randomised controlled clinical trial</td>
<td>Teaching hospital</td>
<td>Kidney transplant recipients</td>
<td>Oral ganciclovir 1000 mg tds x 84 days</td>
<td>Oral acyclovir 800 mg qds x 84 days</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>Hibberd et al 1995</td>
<td>113</td>
<td>Randomised controlled clinical trial</td>
<td>Multicentre</td>
<td>Kidney transplant recipients positive for CMV</td>
<td>Ganciclovir</td>
<td>Placebo</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lowance et al 1999</td>
<td>408</td>
<td>Randomised controlled clinical trial</td>
<td>University</td>
<td>Kidney transplant recipients</td>
<td>Oral valaciclovir 2 g qd x 50 days</td>
<td>Placebo</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Paya et al 2004</td>
<td>364</td>
<td>Randomised controlled clinical trial</td>
<td>University</td>
<td>Kidney, heart and liver transplant recipients</td>
<td>Oral valganciclovir 900 mg qd x 100 days</td>
<td>Oral ganciclovir 1000 mg tds x 100 days</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Reischig et al 2002</td>
<td>38</td>
<td>Randomised controlled clinical trial</td>
<td>Multicentre</td>
<td>Kidney transplant recipients</td>
<td>Oral valaciclovir 2 g qid x 12 weeks</td>
<td>Oral ganciclovir 1 g tds x 12 weeks</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Rubin et al 2000</td>
<td>155</td>
<td>Randomised controlled clinical trial</td>
<td>Multicentre</td>
<td>Kidney, heart and liver transplant recipients</td>
<td>Oral ganciclovir 1000 mg tds x 12 weeks</td>
<td>Oral acyclovir 400 mg tds x 12 weeks</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Snydman et al 1987</td>
<td>99</td>
<td>Randomised controlled clinical trial</td>
<td>University</td>
<td>Kidney transplant recipients</td>
<td>Intravenous CMV immunoglobulin prophylaxis 150 mg/kg of body weight within 72 hours of transplant, then 100 mg/kg (\times) 2 at 2 and 4 weeks after transplant, then 50 mg/kg at 6, 8, 12 and 16 weeks after transplant</td>
<td>Placebo</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Winston & Busuttil 2003</td>
<td>64</td>
<td>Randomised controlled clinical trial</td>
<td>University</td>
<td>Liver transplant recipients</td>
<td>Oral ganciclovir 1000 mg tds x 86 days</td>
<td>Intravenous ganciclovir 6 mg/kg/day of body weight x 86 days</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Quality of randomised controlled trials

<table>
<thead>
<tr>
<th>Study ID (author, year)</th>
<th>Method of allocation concealment</th>
<th>Blinding</th>
<th>Intention-to-treat analysis</th>
<th>Loss to follow up (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(participants)</td>
<td>(investigators)</td>
<td>(outcome assessors)</td>
<td></td>
</tr>
<tr>
<td>Flechner et al 1998</td>
<td>Adequate</td>
<td>No</td>
<td>No</td>
<td>NA*</td>
</tr>
<tr>
<td>Hibberd et al 1995</td>
<td>Adequate</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lowance et al 1999</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>NA*</td>
</tr>
<tr>
<td>Paya et al 2004</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reischig et al 2002</td>
<td>Adequate</td>
<td>No</td>
<td>No</td>
<td>NA*</td>
</tr>
<tr>
<td>Rubin et al 2000</td>
<td>Adequate</td>
<td>No</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Snydman et al 1987</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Winston & Busuttil 2003</td>
<td>Unclear</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
</tbody>
</table>

* NA = not available

OUT OF DATE
Table 3. Results for dichotomous outcomes

<table>
<thead>
<tr>
<th>Study ID (author, year)</th>
<th>Outcomes</th>
<th>Intervention group (number of patients with events/number of patients exposed)</th>
<th>Control group (number of patients with events/number of patients not exposed)</th>
<th>Relative risk (RR) [95% CI]</th>
<th>Risk difference (RD) [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flechner et al 1998</td>
<td>CMV disease</td>
<td>1/40</td>
<td>9/39</td>
<td>0.11 (0.01 to 0.82)</td>
<td>-0.21 (-0.35 to -0.06)</td>
</tr>
<tr>
<td>Hibberd et al 1995</td>
<td>Death</td>
<td>1/64</td>
<td>2/49</td>
<td>0.38 (0.04, 4.10)</td>
<td>-0.03 (-0.09, 0.04)</td>
</tr>
<tr>
<td></td>
<td>CMV disease</td>
<td>9/64</td>
<td>16/49</td>
<td>0.43 (0.21, 0.89)</td>
<td>-0.19 (-0.34, -0.03)</td>
</tr>
<tr>
<td>Lowance et al 1999</td>
<td>CMV disease</td>
<td>18/306</td>
<td>60/310</td>
<td>0.30 (0.18 to 0.50)</td>
<td>-0.13 (-0.19 to -0.08)</td>
</tr>
<tr>
<td>Paya et al 2004</td>
<td>CMV disease</td>
<td>41/239</td>
<td>23/125</td>
<td>0.93 (0.59 to 1.48)</td>
<td>-0.01 (-0.10 to 0.07)</td>
</tr>
<tr>
<td>Reischig et al 2002</td>
<td>CMV disease</td>
<td>1/12</td>
<td>2/13</td>
<td>0.54 (0.06 to 5.24)</td>
<td>-0.07 (-0.32 to 0.18)</td>
</tr>
<tr>
<td>Rubin et al 2000</td>
<td>CMV disease</td>
<td>15/77</td>
<td>21/78</td>
<td>0.72 (0.40 to 1.30)</td>
<td>-0.07 (-0.21 to 0.06)</td>
</tr>
<tr>
<td>Snydman et al 1987</td>
<td>Virologically-confirmed CMV syndrome</td>
<td>5/24</td>
<td>21/35</td>
<td>0.35 (0.15 to 0.79)</td>
<td>-0.39 (-0.62 to -0.16)</td>
</tr>
<tr>
<td>Winston & Busuttil 2003</td>
<td>CMV disease</td>
<td>3/3</td>
<td>4/32</td>
<td>0.75 (0.18 to 3.09)</td>
<td>-0.03 (-0.18 to 0.12)</td>
</tr>
</tbody>
</table>